Dednat6: an extensible

(semi-)preprocessor for

LualATEX that understands
diagrams in ASCII art

Eduardo Ochs - UFF
TUG 2018 - Rio de Janeiro, 20-22 jul 2018
http://angg.twu.net/dednat6.html

http://angg.twu.net/dednat6.html

Prehistory: dednat.icn
My master’s thesis was partly about Natural Deduction,
and it had lots of tree diagrams like these:

[]' f a]' a—b
f(x) g b b—c
(@) <
Az.g(f(x)) a—c

I used proof.sty to typeset them, but the code
for each diagram was so opaque that I had to keep
a 2D ascii art version of each diagram in comments
so that I wouldn’t get lost...

Prehistory: dednat.icn (2)
...like this:

2" f

eg(f(a)) |

Prehistory: dednat.icn (3)

...then I realized that I could automate the boring part.
I made the syntax of the 2D ascii art trees more rigid
and wrote a parser (in Icon!) that understood it.

A tree with a name tag like “foo below it

would become a \defded{foo}{...} —

dednat.icn would only look for trees in ‘% : -lines,

% 71 f \defded{foo}{

TR \infer [{1}]{ \mathstrut Ax.g(f(x)) }
g X 8 \infer [{}]{ \mathstrut g(£(x)) H

i g(£(x) o \infer [{}]{ \mathstrut f(x) }{

B e 1 \mathstrut [x]"1 &

.f' x.g(£(0) \mathstrut f } &

9 ~foo \mathstrut g } } }

and would put the ‘\defded’s in another file...

Prehistory: dednat.icn (4)
So that I could have this, in myfile.tex:

'\input myfile.auto.dnt

o Wl f

B g

o gaw fle) g
:;: Ax.g(f(x)) g(f(.’L‘)) 1
i oo Ne.g(f(x)
$$\ded{foo}$$

Running ‘dednat.icn myfile.tex’ would generate
the file myfile.auto.dnt.

Prehistory: dednat4.lua
dednat.icn understood one kind of “head”:
% :’-lines would be scanned for trees.

dednat4.lua understood three kinds of heads:

*%:’-lines would be scanned for trees,

‘%L’-lines contained Lua code,

‘%D’-lines contained diagrams in a Forth-based language.
New heads could be added dynamically.

(Actually I also had a head to define abbreviations like ‘->" — ‘\to ’)

Dednat4.lua’s language for diagrams

Based on Forth: stack-based, and we can define words
that affect parsing — that eat the next word or all

the rest of the line. Some words parse a 2D grid with
coordinates for nodes; other words join nodes with arrows.
Generates code for diagxy.tex (a front-end for xypic).

" P

| o
z”’f‘E,P zEP<—<zEP
s, P
VLTECCL
—_
fz.p

EP

XxyZ ————— 27

RN ,\

Dednat4.lua’s language for diagrams (2)

%D diagram adj

%D 2Dx 100 +25

%D 2D 100 LA <-| A

i T

%D 2D <==>

%D 2D v v LA A
z,D 2D +25 B |-> RB

%D 2D

%D 2D +15 \catB \cathA

£ Pppr

%D LA A <-

%D LA B -> A RB —> B RB

%D B RB |—>
%D LA RB harrownodes nil 20 nil <->

%D \catB \catA <- sl” .plabel= a L B=——
'Z,D - \catB \catA -> sl_ .plabel= b R R
%D

%D enddiagram

%D
$$\diag{adj}$$

Dednat4.lua’s language for diagrams (3)
(See my “Bootstrapping a Forth in 40 lines of Lua code”
in the Lua Gems book... section ‘Modes”)

%D di dj .
D 2Dee | 100 425 The words in red
D 2D 100 LA <-| A « '
D 2D ‘ I eat text”
S
v v
R w5 D e 2D and 2Dx eat
B 5 \eum e the rest of the line
D 2D .
D (C LA A < as a grid, and define
B I}iAng I>>A g d ith dinat
g {,A Rg lQarranodei nil 20 nil <-> hodes w1 coordinates.
! tA <- ~ .plabel= L]
D \catB \cath —> sl_ .plabel= b R .plabel modifies the
D shddiagran arrow at the top of the
D
$\diag{adj}$$ stack: ‘placement’ ‘label’

10

Dednat4.lua’s language for diagrams (4)
(See my “Bootstrapping a Forth in 40 lines of Lua code”
in the Lua Gems book... section ‘Modes”)

%D di dj
D odce 00 425 2D and 2Dx eat
D 2D 100 LA <-| A .
D 2D | | the rest of the line
2 -
v v
D o5 > as a grid, and define
DD i \exB \emih nodes with coordinates.
D 2D
%D (C LA A <| Arrow words connect the two
BBt ¢ t nodes in the stack
->
g I(A Rg Qarrzwnodei nill2g x{il <I:> OmeS nodes n € stack.
t] thA <- s1” . = -
D \catB \cath -» o1 blabei- p & harrownodes creates two
D ahddisgran phantom nodes for a middle
D .
$\diag{adj}$$ horizontal arrow.

Dednat4.lua’s language for diagrams (5)

For the sake of completeness... diagram resets several tables,
enddiagram outputs the table arrows as diagxy code,

s1” and sl_ slide the topmost arrow in the stack,

The))’in a ((...)) block drops all top items from the
stack until the depth becomes what it was at the ‘((,

we can put Lua code in ‘/L’ lines between ‘/D’ lines, and...

require "diagforth"

storenode {TeX="a", tag="a", x=100, y=100} iQ
Storenode {TeX="b", tag="b", x=140, y=100} < this Lua code
= nodes

shows how the

storearrow(DxyArrow {from="a", to="b", shape="|->",

slide="5pt", label="up",

placement="a"}) low-level
storearrow(DxyArrow {from="a", to="b", shape=".>"})
storearrow(DxyPlace {nodes["a"]}) :
storearrow(DxyLiteral {"literal foobar"}) functions
=arrows
print (arrou_to TeX(arrous[11)) work...
print (arrows [2] :TeX())

print (arrows[3] :TeX())
print (arrows[4] :TeX())
print (arrows_to_TeX())

11

12

Dednat6: a semi-preprocessor
Dednat4 is a real pre-processor —

it generates a foo.auto.dnt from foo.tex,
and it runs before KTEX.

In Dednat6 the Lua code that processes the

lines with heads like ‘%L’, “%:’, ‘%D’ etc,

pretends to run at the same time as TEX...

In fact there are synchronization points.

Each tree in a %:’ block generates a ‘\defded’

each diagram in a ‘/D’ block generates a ‘\defdiag’..
‘\pu’ means “process all pending heads until the
current line”; and send the defs to BTEX—

Dednat6: a semi-preprocessor (2)

‘\pu’ means “process all pending heads until the
current line”; and send the defs to BTEX—

This is implemented using “blocks” with i and j fields
for their starting and ending lines.

diagram triangle

2Dx. 100 +20
2D 100 A --> B
2D A

D U ‘%D’ block: lines 1-10
%%AB—)BC-)AC—) FiI‘St é\pu7: line 12

\D
D enddiagram

§$\pu \diag{triangle}ss “%:” block: lines 15-22
Second ‘\pu’: line 24

Whole .tex file: lines 1-24

$8\pu \ded{a-tree}$$

13

Dednat6: a semi-preprocessor (3)

‘\pu’ means “process all pending heads until the
current line”; and send the defs to BTEX—

This is implemented using “blocks” with i and j fields
for their starting and ending lines.

63 S e, tf = Block {i=1, j=24, nline=1, ...}
/“’ 2N First ‘\pu’: line 12
vy processuntil (12)
% 20
'/'D 2D - ¢ processlines(1, 11)
4D §§ AB->BC->AC-> processblock {head="/D", i=1, j=10}
%D enddiagram output ("\\defdiag{triangle}{...}")
$$\pu \diag{triangle}$$ nline=13
tf becomes {i=1, j=24, nline=13, ...}
h
7777777 Second ‘\pu': line 24
B < processuntil (24)
B/\C processlines (13, 23)

processblock {head="7%:", i=15, j=22}
output ("\\defded{a-tree}{...}")
$$\pu \ded{a-tree}$$ nline=25

Y
%
YA
Y
Y
W

Dednat6: a semi-preprocessor (4)

%D diagram triangle

%D 2Dx 100 +20
%D 2D 100 A --> B
%D 2D N
%D 2D v v
%D 2D +20 C
%D 2D

% ((AB->BC->AC->
%D enddiagram

$$\pu \diag{triangle}$$

% “a-tree

h:
$$\pu \ded{a-tree}$$

tf = Block {i=1, j=24, nline=1, ...}
First ‘\pu’: line 12

processuntil(12)

processlines(1, 11)

processblock {head="yD", i=1, j=10}
output ("\\defdiag{triangle}{...}")
nline=13

tf becomes {i=1, j=24, nline=13, ...}

Second ‘\pu’: line 24

processuntil(24)

processlines(13, 23)

processblock {head="7:", i=15, j=22}
output ("\\defded{a-tree}{...}")
nline=25

15

16

Downloading and testing
I gave up (temporarily?) keeping a package or a git repo
of Dednat6... but if you run something like this in a shell,

rm -rfv /tmp/edrx-latex/

mkdir /tmp/edrx-latex/

cd /tmp/edrx-latex/

See: http://angg.twu.net/LATEX/2017planar-has-1.pdf
wget http://angg.twu.net/LATEX/2017planar-has-1.tgz
tar -xvzf 2017planar-has-1.tgz

lualatex 2017planar-has-1.tex

you download and unpack a .tgz with the full source code
for 2017planar-has-1.pdf, including a full version of
Dednat6, and all the (non-standard) TEX files...

The home page of dednat6
http://angg.twu.net/dednat6.html

points to several such .tgzs, both simple and complex.

http://angg.twu.net/dednat6.html

Extensions

It is easy to extend Dednat6 with new heads...
For example, for these slides I created a head ‘/,V’
for a Dednat6-based verbatim mode...

the Lua code was initially just this:

registerhead "%V" {
name = "myverbatim",
action = function ()
local i,j,verbatimlinesorig = tf:getblock()
verbatimlines = verbatimlinesorig
end,

Dednat6 would take each block of ‘%V’ lines and

store its contents in the global variable verbatimlines,
that I would process in Lua in ‘L’ lines to generate
the XTEX code that I want...

17

18

Hacking

Hacking something usually consists of these stages:

1) “reading”: understanding docs, data structures, code
2) making tests, dumping data structures

3) “writing”: implementing new things

Here’s how to do (1):

Learn a tiny bit of Emacs and eev:
http://angg.twu.net/#eev

and run the “eepitch blocks” in the Lua source files...

http://angg.twu.net/#eev

Eepitch blocks in comments in Lua files

This is a comment block in dednat6/diagforth.lua:

__[==[

* (eepitch-lua51)
* (eepitch-kill)

* (eepitch-lua51)
require "d)agforth"
storenode {TeX="a"
storenode {TeX=
= nodes

tag="a", x=100, y=100}
", tag="b", x=140, y=100}

', to="b, Shape,” >,
5pt', labél="up"

placement-"a"})

storearrow(DxyArrow {from: to="b", shape=".>"})

Storearrow(DxyPlace {nodes["ail})

storearrow(DxyLiteral {"literal foobar"})

= arrous

—-]==

storearrow(DxyArrow {fro
s1i

It is an “e-script” — an executable log of an experiment
that I was doing. It can be “played back” by typing
‘F8s in Emacs+eev — an ‘F8 on a red star line runs
that line as Lisp code (— set up a target buffer)...

19

Eepitch blocks in comments in Lua files (2)
—[=[
* (eepitch-luabl)
* (eepitch-kill)
* (eepitch-luabl)
require "diagforth"
storenode {TeX="a", tag="a", x=100, y=100}
storenode {TeX="b", tag="b", x=140, y=100}
= nodes

..
__] ==
An ‘F8 on a red star line runs that line as Lisp code
(— set up a target buffer with a Lua interpreter)
and an ‘F8 on a non-red star line sends that line to
the target buffer as if the user had typed it...

20

21

REPLs
Here’s a screenshot.

2 5,1,
require

", x=100, y=100}
storenode {Tel L x40, w100}

Left Emacs window: the e-script buffer. The cursor is there: l
We have just executed an eepitch block with ‘F8’s.

Right Emacs window: the target buffer, with a terminal

running Lua 5.1 in interactive (Read/Eval/Print/Loop) mode.
Blue ‘>’s: Lua prompts. Bold white: user input (sent with ‘F8’s).

Here we used just Lua, not Lual4ATEX.

REPLs (2)
It is also possible to run Rob Hoelz’s lua-repl
from inside LualATEX. Here’s a screenshot.

%, box[0], 1ist, id, node, id("glyph™}}

x.hox[0]. list.char, string.byte("a"}}

(tex,box[0], 1ist next)

x.hax[0]. list.next.char, string.byte("h"))

xshell=

When you are a Bear of Very Little Brain —
like me — LuaTgX’s interface to TEX boxes
looks very hard... lua-repl may help.

22

23

HEY!!!

From http://angg.twu.net/dednat6.html:

I’ve stopped trying to document dednat6 because

1) I don’t have a mental image of who I am writing for,

2) I get far too little feedback,

3) all of the feedback that I got came from people who felt
that I was not writing for them — my approach, tone and
choice of pre-requisites were all wrong.

If you would like to try dednat6, get in touch, let’s chat —
please!

Maybe I can typeset in 20 minutes a diagram that took you
a day, maybe I can implement an extension that you need...

http://angg.twu.net/dednat6.html

